Chemistry Nobel Prize Essay

This year’s Nobel Prize winners will be revealed throughout the first two weeks of October. You’ll find the details here as they are announced, along with links to Quartz’s coverage of the people and ideas behind the awards.

💊 Monday, Oct. 2: The Nobel Prize in physiology or medicine was awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for their discovery of “molecular mechanisms controlling the circadian rhythm.” Read Quartz’s story about the science behind their work. (Bonus: Hall left science because he ran out of money.)

🌀 Tuesday, Oct. 3: The Nobel Prize in physics was awarded to Rainer Weiss, Barry Barish, and Kip Thorne “for decisive contributions to the LIGO detector and the observation of gravitational waves.” Read Quartz’s story about the science behind their work.

🔬 Wednesday, Oct. 4: The Nobel Prize in chemistry was awarded to Jacques Dubochet, Joachim Frank, and Richard Henderson “for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution.” Read Quartz’s story about the science behind their work. (Bonus: Dubochet’s CV is a total treat.)

📚 Thursday, Oct. 5: The Nobel Prize in literature was awarded to Kazuo Ishiguro “who, in novels of great emotional force, has uncovered the abyss beneath our illusory sense of connection with the world.” Read Quartz’s story on Ishiguro’s work. (Bonus: Ishiguro couldn’t have written his critically acclaimed first novel without his wife.)

🕊 Friday, Oct. 6: The Nobel Peace Prize was awarded to the International Campaign to Abolish Nuclear Weapons (ICAN) “for its work to draw attention to the catastrophic humanitarian consequences of any use of nuclear weapons and for its ground-breaking efforts to achieve a treaty-based prohibition of such weapons.” Read Quartz’s story on ICAN’s work. (Bonus: Why the Nobel Peace committee backed ICAN’s pus in the UN.)

💰 Monday, Oct. 9: The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel was awarded to Richard Thaler “for his contributions to behavioral economics.” Read Quartz’s story on Thaler’s work.

Related stories

  1. The Nobel prize was created to make people forget its inventor’s past
  2. Why is there no Nobel Prize in technology?
  3. Kazuo Ishiguro’s Nobel Prize is a victory for literary weirdness
  4. In defense of the Nobel Prize
  5. The Nobel Prize committee explains why women win so few prizes

Who won the 2017 Nobel Prize in Chemistry?

The 2017 Nobel prize in Chemistry has been awarded to Jacques Dubochet (University of Lausanne, Switzerland) Joachim Frank (Columbia University, New York) and Richard Henderson (MRC Laboratory of Molecular Biology, Cambridge, U.K.) "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution".

What was the need to go beyond electron microscopy?

For many years — in the 1970s, the electron microscope was the only way to look into the cell and observe the minute beings that play such an important role in our lives such as viruses. However, the powerful beam of the electron microscope would destroy biological material, so it was believed that such microscopy could only reveal images of dead cells and dead organisms. Also it was then impossible to view solutions as water would evaporate under the microscope’s vacuum.

That was until this year’s laureate Richard Henderson came on to the scene. To get the sharpest images he travelled to the best electron microscopes in the world. They all had their weaknesses, but complemented each other. Finally, in 1990, 15 years after he had published the first model, Prof. Henderson achieved his goal and was able to present a structure of bacteriorhodopsin at atomic resolution.

However the problem still remained of imaging biological molecules which got destroyed when the electron beam of the microscope was focused on them at normal temperatures.

A detour: What is cryo-electron microscopy?

“Cryo”, short for cryogenic refers to very low temperatures. Though the actual temperature is not well defined, it is below minus 150°C. In the context of electron microscopy, it refers to the fact that the object to be imaged is frozen to such low temperatures to facilitate being studied under the beam of the electron microscope.

This method is so effective that even in recent times, it has been used to image the elusive Zika virus: When researchers began to suspect that the Zika virus was causing the epidemic of brain-damaged newborns in Brazil, they turned to cryo-EM to visualise the virus. Over a few months, threedimensional (3D) images of the virus at atomic resolution were generated and researchers could start searching for potential targets for pharmaceuticals.

Back to the story

The question was whether the method could be generalised: would it be possible to use an electron microscope to generate high-resolution 3D images of proteins that were randomly scattered in the sample and oriented in different directions?

Prof. Frank had long worked to find a solution to just that problem. In 1975, he presented a theoretical strategy where the apparently minimal information found in the electron microscope’s two-dimensional images could be merged to generate a high-resolution, three-dimensional whole. Between 1975 and 1986, Prof. Frank succeeded in merging two fuzzy images of a molecule to get a three-dimensional image.

in 1978, Prof. Dubochet was recruited to the European Molecular Biology Laboratory in Heidelberg to solve another of the electron microscope’s basic problems: how biological samples dry out and are damaged when exposed to a vacuum. The solution he envisaged was to freeze water rapidly so that instead of solidifying into a crystalline solid, it freezes into a disordered state, which is like a glass. Though a glass appears to be solid, it is actually what is called a supercooled liquid in which individual molecules are arranged at random instead of a periodic crystalline solid structure. Prof. Dubochet realised that if he could freeze the water to form a glassy state, what is known as vitrified water, it would not dry up when excited by the beam.

In the early 1980s, Prof. Dubochet cooled water so rapidly that it solidified in its liquid form around a biological sample, allowing the biomolecules to retain their natural shape even in a vacuum. In 1984, he published the first images of a number of different viruses, round and hexagonal, that are shown in sharp contrast against the background of vitrified water.

0 thoughts on “Chemistry Nobel Prize Essay

Leave a Reply

Your email address will not be published. Required fields are marked *